登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 机械机电类 > 车辆工程 > 正文

汽车翻滚碰撞车身变形特性及防护研究毕业论文

 2021-04-19 01:04  

摘 要

.

近些年来,中国在交通产.业运营以及高速公路方面取得瞩目成绩,同时国内旅游业蓬勃发展,大客车在我国汽车市场中的使用量呈现出不断上升的态势,因此本文选取大客车作为研究对象。由于大客车的客运运输承载力较大,运输效率高,一旦客车遭遇翻iii撞(即侧翻)事故,大可能会对车身以及车内人员产生严重的伤害从而造成大规模伤亡,引发负面的社会影响。由此可见,加大对于客车侧翻条件下车身变i形特性的研究力度可以有效地预防侧翻事故发生并减小事故后的伤亡和损失,从而达到保护乘客生命和财产安全的目的。

考虑到现今国内对于大客车翻iii撞的研究较为匮乏,而国内客车事故频发。且我国最新版《客车上部.结构强.度的规定》完全按照欧i洲经i济委员会所制定的安全性.i规ECE R66进行修订,因此本文在ECE R66的规.定要求下,利用CATIA V.5R20三.维建i模软件建立了某款大客车的整车车身的骨架模型,之后将其转为合适的格式导入到动力学仿真软件A.NSYS的显示动力学模块LS-D.YNA中进行网格划分和有限元仿真,最后利用动i力学仿i真软件A.NSYS自带的后.处理软件LS-PrePost对结果进行后处理。对所得到仿i真结果中的加速度、车i身骨架变i形情况、能i.ii化曲线和受力变化进行分析和研究,并根据结果提出了一些优化改进以及防护方案来防止侧翻事故发生,减小事故所造成的安全伤亡和..济损. . .i失。

研究结i果表明:所引用的大客车骨架模型中,车身侧部和车顶部结构强度相对较弱,同时还发现,车架顶端的骨架变形量最大,触地侧其次,远地侧最小。并且,大客车是否有蒙. .皮、蒙. .皮的结构和材料等因素对车身变i.形有不同的影响。

这些研究结论对于国内汽车侧翻的仿i真实验、客车翻滚碰撞车身变形特性和防护措.施具有一定的参考意义,对国内客车的开i发、设i计与制造流程也拥有现实意义。

关键词:侧翻;安全性;LS-DYNA;客车

Abstract

In recent years, China has achieved remarkable successes in the operations of the transportation industry and highways. At the same time, the domestic tourism industry has been booming. The use of buses in China’s automobile market has been on the rise. Therefore, this issue selects buses as research goal. Due to the large passenger transport capacity and high transport efficiency of coaches, once a coach encounters a crash(a rollover accident), it may cause serious injury to the vehicle body and the people in the vehicle, leading to mass casualties and negative social impact. It can be seen that increasing research efforts on the characteristics of the body under the passenger side rollover condition can effectively prevent the rollover accident and reduce the casualties and losses after the accident, so as to achieve the purpose of protecting passengers' life and property safety.

Considering that there is a lack of research on the rollover of large coaches in China today, domestic passenger car accidents are frequent. In addition, the latest version of China’s “Higher Passenger Cars Structural Strength Regulations” is completely revised in accordance with the Security Laws and Regulations ECE R66 established by the European Economic Development Commission. This article is based on the requirements of ECE R66 regulations. We used CATIA V5R20 software to establish a skeleton model of the entire vehicle body of a large passenger car, and then convert it into an appropriate format to import the dynamics simulation software explicit dynamics module LS-DYNA of ANSYS to finish mesh and finite element simulation, and finally use dynamic simulation software ANSYS's own post-processing software LS-PrePost to deal with the results. The acceleration, the shape change, the variable curve, and the change of force in the result obtained are analyzed and studied. Based on the results, some optimization and protection schemes are proposed to prevent rollover accidents, reduce accidents caused by safety casualties and economic losses

The results of the study show that the strength of the side body and the roof structure of the body frame of the cited bus is relatively weak, and at the same time, it is found that the deformation of the skeleton at the top of the frame is the largest, the second is on the touchdown side, and the smallest is on the far side. In addition, whether the bus has a skin,the structure and material of the skin have different effects on the body shape.

These research conclusions have certain reference meanings for domestic car rollover simulation experiment, coach rolling collision body deformation characteristics and protective measures. It also has practical significance for the domestic passenger car's development, design and manufacturing process.

Key Words:Rollover;Safety;LS-DYNA;Coach

目录

摘要

Abstract

第1章 绪论 1

1.1 汽车翻滚碰撞车身变i形特性及防护研究背景 1

1.2 客车翻滚碰撞安全法规 2

1.2.1国外客车翻滚碰撞安全法规 2

1.2.2国内客车翻滚碰撞安全法规 3

1.3 国内外客车翻滚碰撞研究现状 4

1.3.1国外客车翻滚碰撞研究现状 4

1.3.2国内客车翻滚碰撞研究现状 5

1.4 本文主要研究内容、目的及意义 6

1.4.1研究内容 6

1.4.2研究目的及意义 7

1.5本章小结 8

第2章 软件介绍 9

2.1软件使用 9

2.2 CATIA简介 9

2.3 ANSYS、LS-DYNA及Workbench简介 9

2.3.1 ANSYS 9

2.3.2 LS-DYNA 10

2.3.3 ANSYS LS-DYNA及Workbench的介绍 10

2.4 ANSYS求解器 12

2.5 LS-PrePost 12

2.6 本章小结 12

第3章 客车翻滚碰撞理论 13

3.1 翻滚碰撞定义及影响因素介绍 13

3.1.1 侧翻定义 13

3.1.2 影响因素 14

3.2 生存空间与翻转平台试验 15

3.2.1生存空间 15

图3.3 客车截面图 15

3.2.2翻转平台试验 16

3.3 有限元思想基础与应用 17

3.3.1有限元基础 17

3.3.2有限元在客车翻滚碰撞的应用 17

3.4 相关模型与算法方程 19

3.4.1数学模型及算法方程 19

3.4.2显式时间积分算法 23

3.4.3 接触—碰撞面算法与处理 26

3.4.4 沙漏模式及控制 28

3.4.5 结构单元 29

3.5 本章小结 30

第4章 客车骨架模型建立与仿真处理 31

4.1 客车骨架模型的建立与前处理 31

4.1.1 车身结构 31

4.1.2 三维模型搭建及处理 31

4.1.3 ANSYS前处理 32

4.2 ANSYS前处理 34

4.2.1 材料库 34

4.2.2 网格划分 35

4.2.3 其他条件设定 37

4.3 K文件的处理和求解运算 39

4.4 本章小结 39

第5章 仿真结果、结论与防护措施 40

5.1 仿真结果及相关数据 40

5.1.1 位移分析 40

5.1.2 加速度分析 41

5.1.3 能量分析 43

5.1.4 生存空间分析 44

5.2 结论 45

5.3 防护措施 47

5.3.1 事故预防措施 47

5.3.2 事故保护措施 47

5.4 本章小结 50

第6章 总结与展望 51

6.1 全文总结 51

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图